
Managing Your Memory
by David Selwood

One of the problems with both
Delphi 1 and Delphi 2 is that a

compiled application only has one
data segment. This needn’t be a
problem with smaller applications,
but on larger applications this
restriction should be planned for
from the initial stages of develop-
ment. This article discusses appli-
cation and Windows memory and
how to minimise use of the data
segment.

Memory Model
The memory model of a Delphi
application will consist of one or
more code segments and one data
segment. Table 1 shows the data
segment contents.

The data segment hence con-
tains three segments. It also con-
tains a task header which is about
16 bytes in size that is used by
Windows. In Delphi 1 the size of
the data segment is limited to 64Kb
and with Delphi 2 the limit is 1Mb.
When the barrier is reached the
error Data Segment too large is dis-
played and you will be forced to
re-engineer your design. The differ-
ence between 64Kb and 1Mb is
extensive, but Delphi 2 developers
will hit this limit if large data
structures are not implemented
correctly.

Delphi can provide you with
some memory usage details if you
compile your program and then
select Options | Compile | Infor-
mation. Both the stack size and lo-
cal heap size can be modified
under Options | Project and
Options | Linker. These can also be
set with the $M compiler directive.
The setting of the stack size and
local heap size has no effect when
compiling DLLs since these use
the stack and heap of the calling
application.

Note that there are two heaps,
the Windows heap (often referred
to as the global heap) and the local
heap, sometimes called the appli-
cation’s heap. The global heap
consists of extended and virtual

memory and Delphi uses a segment
sub-allocator algorithm for alloca-
tion of this memory. This is re-
quired because Windows imposes
a system-wide limit of 8192 mem-
ory blocks. The routines MemAvail
and MaxAvail return the amount of
free memory available on the
global heap. If you read this topic
up, the documentation may refer to
the heap, but might give no men-
tion if it is the Windows or applica-
tion’s heap. In general you can
assume they are referring to the
Windows heap.

Minimising Data Segment Use
Setting the stack size is a hit and
miss adventure. Tools are avail-
able that inform you how much
stack your application uses, but
these results tend to be inaccurate.
When testing a project always have
stack overflow checking turned on.
This can be found under Options |
Project | Compiler under Run-Time
Errors.

I would suggest you keep making
the stack smaller and test your
application fully until the runtime
error 202 occurs or you get a
general protection error, which
means a stack overflow error has
occurred. You can then increase
the size of the stack by 10%.

Again, setting the local heap size
can be difficult. Borland recom-
mend a minimum local heap size of
1024 bytes, if your application uses
Windows edit controls or list

boxes. Since this is generally true I
would recommend that you don’t
allow the local heap to be declared
smaller than this. Also you should
have I/O error checking turned on.
Should you use the Windows API
functions beginning with Local (for
example LocalAlloc) then the size
should be increased accordingly. If
the heap size is too small a general
protection error will occur or a
runtime error 203.

The static data size will depend
on the global variables and typed
constants in the Pascal units you
have created and also the units you
are accessing with the uses clause.
It should be possible to limit the
static data your application uses
by using Windows global memory
instead. However you may have no
control over memory use in units
declared in the Uses clause.

To resolve the limitation im-
posed by one data segment, mem-
ory can be taken from the Windows
global heap. The limitation will
now be the size of the virtual mem-
ory. Memory that is allocated dy-
namically with New and GetMem use
the Windows global heap. When
objects are created these are
stored in the global heap, with the
exception of the variable which
points to the class. This variable
will only use four bytes in the data
segment.

Some other recommendations to
reduce the size of the data segment
are as follows:

Segment Description

Data Area of memory used to store global variables (variables not
declared within procedures or functions or classes) and typed
constants. Note that sometimes this area is referred to as static
data. Don’t confuse this term with static variables as used in C.

Stack The Stack is used to store local variables (variables declared
within procedures or functions or methods) and is used for the
temporary storage of return addresses for subroutines.

Heap This is the local heap and is used by Windows controls and API
routines beginning with Local. The local heap can grow
dynamically if not large enough.

➤ Table 1: Data segment contents

February 1997 The Delphi Magazine 39

➣ Allocate large data structures
dynamically so that the
Windows global heap is used.

➣ Minimise your use of typed
constants.

➣ Minimise your use of global
variables.

➣ When using variables of type
string always declare the maxi-
mum size of the string, other-
wise 255 bytes will be allocated.

➣ Use PChars where possible as
these use the Windows global
heap.

➣ Use class objects as these use
the Windows global heap.

➣ If you use variables declare
them in a class.

➣ Should your application use
many global variables then
create a class to hold them.

A short example of using the
Windows global heap is given in
Listing 1.

This only uses four bytes in the
application’s data segment, for the
storage of a pointer. The New com-
mand causes memory to be allo-
cated dynamically at runtime from
the Windows global heap. Any
memory that is allocated should be
disposed of and as can be seen in
the example the Dispose command
is within a Finally block so that the
memory will always be freed. If
memory is not disposed of then
memory leaks will occur and you
will not be popular. To access the
data you only have to use the caret
operator (^) to deference the
pointer.

Windows Task Database
One of the riddles with Windows is
that it uses DOS conventional mem-
ory to store the Windows Task
Database. Each Windows program
(EXE or DLL) creates a task data-
base and generally when Windows
has booted up there can be as little
as 150Kb free, so this valuable
space should be monitored.

It is common knowledge that
there are Windows API functions
which return the percentage of free
resources (GetFreeSystemResour-
ces) and the amount of global heap
free (GetFreeSpace). However,
there is no function which returns
the amount of free conventional
memory. The function in Listing 2

will calculate the amount of free
base memory and should be used
if your application relies on DLLs,
OLE, or if it spawns off other
applications.

Conclusion
Hopefully this article will have pro-
vided a brief insight into an appli-
cation’s data segment and ideas on
how to overcome its shortcomings.

If possible experiment with some
of the Windows memory monitor-
ing tools such as InfoSpy and Heap-
Trace. Norton also provide a tool
called SysWatch which monitors
DOS memory. Knowing what
memory is being used and when
will allow you to avoid memory
problems.

David Selwood currently works as
a freelance contractor. Email him
at dselwood@aol.com

Function GetBaseMemFree: longint;
var
 AllocatedBlock, Maximum, Minimum : longint;
 FreeBlock : word;
begin
 {Maximum amount of DOS memory = 1Mb}
 Maximum:= $100000
 Minimum:= $0;
 while Maximum > Minimum do begin
 Result:= (Maximum + Minimum) div 2;
 AllocatedBlock:= GlobalDosAlloc (Result);
 {Can’t allocated block}
 if AllocatedBlock = 0 then
 Maximum:= Result
 else begin
 FreeBlock:= AllocatedBlock and $FFFF;
 GlobalDosFree (FreeBlock);
 Minimum:= Result +1;
 end;
 end; {while}
end; {GetBaseMemFree}

➤ Listing 2

procedure Display_Information;
type
 tAddress = record
 Forename: string [30];
 Surname: string [30];
 Email: string [30];
 end;
var
 pAddress: ^tAddress;
begin
 New (pAddress);
 try
 with pAddress^ do begin
 Forename:= ’David’;
 Surname:= ’Selwood’;
 Email:= ’DSELWOOD@AOL.COM’;
 ShowMessage(Forename + ’ ’ + Surname + #13 + Email);
 end;
 finally
 Dispose(pAddress);
 end;
end; {Display_Information}

➤ Listing 1

40 The Delphi Magazine Issue 18

	Memory Model
	Minimising Data Segment Use
	Windows Task Database
	Conclusion

